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Final Report for Army Research Office grant
W911NF-07-1-0112

Simulation of Devices with Molecular Potentials
Reporting period: 04/01/07 – 11/30/13

1 Problems Studied

The objectives of this project were (1) to design, implement, and analyze novel optimization
algorithms for generating the coordinate space trajectories of molecules that are undergo-
ing conformational transformations as a result of light-induced excitations and subsequent
relaxation processes and (2) to improve the PI’s existing Wigner-Poisson code to enable
simulations of devices with more complex barrier structures.

In the period of this report the project has supported three Ph. D. students: David
Mokrauer, who finished his Ph. D. in 2012, Anne Costolanski, who finished her Ph. D. in
2013, and James Nance.

Publications from the project include a book [16], seven journal papers [5, 14, 17, 18, 27,
29, 30] two Ph. D. theses [4, 31], two articles in refereed proceedings [6, 28], one submitted
journal paper [35], and a Sandia technical report [7].

2 Important Results

2.1 Molecular Confirmation and Dynamics

The objective in this part of the project was to design an efficient algorithm for simulation
of light-induced molecular transformations. The simulation seeks to follow the relaxation
path of a molecule after excitation by light. The simulator is a predictive tool to see if light
excitation and subsequent return to the unexcited or ground state will produce a different
configuration than the initial one.

We simulate the results of the excitation, rather than the excitation itself. The excitation
will change the quantum state of a molecule. Our objective is to design software that will
let one explore the possible changes in a molecule after a sequence of excitations.

The goals of the simulation are not only to identify the end point, but to report the
entire path in an high-dimensional configuration space so that one can look for nearby paths
to interesting configurations and examine the energy landscape near the path to see if low
energy barriers make jumping to a different path possible. We will describe the final version
of the algorithm from [31]. This version represents an evolution of the ideas from earlier
versions of the algorithm [28–30]. The software has also been applied to sensors in [3].

As pointed out in these earlier papers, previous work on this type of problem (see [26,32,
36], for example) did not address the general simulation issue, but rather were investigations
of specific reactions using Gaussian scans of the surface for the particular molecule of interest.
We are the first to address the general problem for more than a single degree of freedom.
Our approach uses the Smolyak sparse interpolation [34] method to build a surrogate model
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of an expensive molecular dynamics code (in our particular case Gaussian [11]), and uses
that model to drive a numerical ODE integrator.

We begin in § 2.1.1 with a precise statement of the problem and the stages of model
reduction we will need to make a solution computationally tractable.

2.1.1 Background

The task is to develop a design tool which will simulate molecular changes after excitation.
Ideally, we would do this by computing the ground state, simulating excitation with a quan-
tum chemistry code (in our case Gaussian [11]), and then following the gradient descent path
in molecular configuration space (bond lengths, valence angles, and torsion angles).

Molecules of interest can have hundreds of atoms and degrees of freedom. One cannot
vary all of the degrees of freedom at once in a dynamic simulation because the simulator is
too computationally costly. Hence, we must apply several layers of model reduction.

The first of these is to isolate a few molecular coordinates of particular interest and vary
only those in the dynamic simulation. The simulator computes an energy E`(p) as a function
of a vector of configuration variables (torsion and bond angles) p ∈ RN and the quantum
state ` = 0, 1, . . .. We split

p =

(
x
ξ

)
into a low-dimensional vector of design variables x and the remainder ξ. Given `, we compute
the energy E`(x) as a function of x alone via

E`(x) = min
ξ
E`
(
x
ξ

)
(1)

Gaussian approximates the solution of the optimization problem in (1) with a variant of the
the BFGS [1,8,9,12,15,33] algorithm. The objective of this project is to simulate excitation
of a molecule from one quantum state ` to another `′ and the subsequent relaxation to a local
minimum of E`′ . The simulator will do this repeatedly for a sequence of states, beginning
and ending at ` = 0. We seek a sequence of states for which the initial configuration at the
ground state (` = 0) is different from the one at the end of the sequence of excitations.

For each `, we would ideally compute the local minimum with the gradient descent
method, i. e. integrate the dynamics

ẋ = −∇E`(x) (2)

with initial data given either by the ground state configuration (for ` = 0 at the start of
the simulation) or by the result of excitation from a local minimum at another state. The
evaluation of ∇E` is too expensive to drive the numerical solution of (2), so we apply a
second level of model reduction and replace E` with a piecewise polynomial interpolant.
This is sufficient, if done carefully, to solve simple problems with as many as two degrees
of freedom (i. e. ` ∈ R2), and we report on results with a simple two-dimensional spline
interpolation in [28, 29]. The problems with such an interpolation are that the number of

2



nodes increases exponentially with the number of degrees of freedom (the size of x) and one
must take care with the ordering of the evaluation of the nodes to make sure that the internal
optimization has a sufficiently good initial iteration. The internal optimization in Gaussian
can fail if one does not pay attention to the latter problem.

Our solution to this complexity problem was to use a sparse grid [34] for the interpolation
nodes. The size of the grid grows polynomially with the dimension. Moreover the grids for
given orders of accuracy are nested, enabling us to perform error estimation and control.

2.1.2 Results

Mokrauer defended his thesis [31] and graduated in August 2012. His research with the PI
was the first to use sparse interpolation as a surrogate model for molecular potential energy
functionals. This is important as it enables one to remove calls to a quantum chemistry
simulator from a dynamic simulation of light-induced molecular transition dynamics. The
papers from his thesis [27–30,30] have all appeared. Mokrauer’s LITES code has been used
in [3, 27,30] for simulation of Butene, Stilbene, and Azo-benzene.

The algorithm in the LITES code builds the interpolation adaptively, iterpolating over
patches in configuration space as the integration of the dynamics progresses. While this
worked well, we are not rethinking that approach as we find ways to interpolate an entire
energy landscape with a single interpolation.

The Azo-Benzene simulation encountered difficulties because two energy surfaces inter-
sected. James Nance, the final student on the project, was working on making the evaluation
of the sparse interpolant more efficient so we can simultaneously track multiple conforma-
tional paths from different initial points.

When the project ended, the PI found new funding for Nance and we hope to continue
the work. This will not only be useful in understanding what happens near local maxima
after a drop from an excited state to a lower one, but also what happens when a path crosses
an intersection of energy surfaces. We must also, of course, devise an efficient and robust
approach to detecting intersections. Our first approach at this will be simply to look for a
sign change in the difference of energies on the two paths as the integration progresses.

Nance and the PI have made improvements to the algorithms in Mokrauer’s work. The
simulation is now fast enough to run ensembles of trajectories in configuration space to
capture the effects of thermal fluctuations.

2.2 Wigner-Poisson Solver

In § 2.2.1 we will describe the problem and the older work of the PI and others. In § 2.2.2
we will summarize the results obtained in this project.

2.2.1 Background

The Wigner-Poisson equation [37] is an integro-differential equation that models the quantum
transport of electrons in a semiconductor device, such as an resonant tunneling diode [2,10,
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38, 39]. The steady-state equation is for the distribution function f(x, k), which depends
on space x and momentum k. The steady-state problem is of interest in its own right, and
for analysis of dynamic stability of solutions of the time-dependent problem. We write the
equation using the notation from [38] as

W (f) = Df + P (f) +

(
∂f

∂t

)
coll

= 0. (3)

The linear term Df on the right side of (3) represents the kinetic energy effects on the
distribution and is given by

Df = − hk

2πm∗
∂f

∂x
. (4)

In (4), h is Planck’s constant and m∗ is the effective mass of the electron. The second term,
P (f), is the nonlinear term in the equation and accounts for the potential energy effects on
the distribution

P (f) = −4

h

∫ K

−K
f(x, k′)T (x, k − k′)dk′. (5)

The function T (x, k) is defined by

T (x, k) =
∫ Lc

2

0
[U(x+ y)− U(x− y)] sin(2yk)dy. (6)

In this equation, U(x) is the electric potential as a function of position and Lc is the cor-
relation length. This term is nonlinear in f because U(x) depends on f through Poisson’s
equation (see (10) and (12)). The last term describes electron-electron scattering(

∂f

∂t

)
coll

=
1

τ

[ ∫K
−K f(x, k′)dk′∫K
−K f0(x, k

′)dk′
f0(x, k)− f(x, k)

]
(7)

In (7), τ is the relaxation time, and f0(x, k) is the equilibrium Wigner distribution. f0
is the solution of (3) when there is no voltage difference (zero-bias) across the device. The
equations for f0 differ both in form and in analytic properties from those for the nonzero-bias
case.

Boundary conditions are imposed at the device edges to describe the distribution of
electrons entering the device. On the left (x = 0), we have for k > 0 (electrons with positive
momentum that are moving right)

f(0, k) = f(k) ≡ 4πm∗kBT

h2
ln

(
1 + exp

[
1

kBT

(
h2k2

8π2m∗
− µ

)])
. (8)

Similarly on the right (x = L) we specify f for k < 0 (electrons with negative momentum
that are moving left)

f(L, k) = f(k). (9)

In (8) and (9), kB is Boltzmann’s constant, T is the temperature, µ is the Fermi energy at the
endpoints. The electric potential U(x) is the sum of the potential barrier ∆c(x) that arises
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from the heterojunction of the two different semiconductor materials and the electrostatic
potential u(x). The electrostatic potential is the solution of Poisson’s equation

d2u

dx2
=
q2

ε

[
Nd(x)− 1

2π

∫ K

−K
f(x, k′)dk′

]
. (10)

In (10), q is the charge of the electron, ε is the dielectric constant, and Nd(x) is the doping
profile. Nd is piecewise constant, with a small number (≤ 10) of discontinuities. The
boundary conditions for (10) are

u(0) = 0, u(L) = −Vbias, (11)

where Vbias ≥ 0 is the applied voltage (bias). The potential U is given by

U(x) = u(x) + ∆c(x), (12)

where ∆c(x) is piecewise constant with a small number of discontinuities.
We will assume that the structure is symmetric about x = L

2
, i. e.

Nd(x) = Nd(L− x) and ∆c(x) = ∆c(L− x). (13)

To evaluate the integral in (6) we must extend U outside of the interval [0, L]. We do this
by defining U(x) = U(L) for x > L and U(x) = U(0) for x < 0. With this definition, U is
a piecewise smooth function of x, having discontinuities where ∆c does. f0 is the solution
to the zero-bias problem (Vbias = 0), which differs from the nonzero-bias (Vbias > 0) case in
that the collision term is missing from the integro-partial differential equation, resulting in

W (f) = Df + P (f) = 0, (14)

and V = 0 in the boundary conditions (11) for the Poisson equation.
Unlike [38], where the momentum was unbounded, older work [20, 21, 23–25, 40] of the

PI and his collaborators limited k. The reasons for this were that the standard discretiza-
tion [2, 38] has been found to fail to converge as the number of grid points in momentum
increases [19], whereas limiting K to a physically reasonable value enable not only numerical
observations of convergence, but also a proof [19, 24].

2.2.2 Results

The work in the current project [4–6] began by correcting some errors in the discretizations
in the fortran codes. This led to a significant improvement in accuracy [5], which the PI
improved further with a grid that was nonuniform in both space and momentum. Costolanski
and the PI implemented these ideas in a matlab code. The matlab code was promising enough
to motivate us to implement the new discretization in C++ and parallelize the algorithm
using the Sandia Trilinos [13] framework.

Costolanski’s final C++ code has non-uniform grids in both space and momentum [6].
Costolanski graduated in August 2013. Her thesis reports on numerical to determine the
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difference between the discretizations from [10, 38] and those from [22–24], grid refinement
studies, stability analysis, and continuation results. Her work corrected several errors in
previous simulators and, at least numerically, gave new insights into the dynamic stability
of the Wigner-Poisson model.
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